Develop the divisibility rules for when a given integer is divisible by $3,9,5,6$, and 10 , so that we don't have to do lots of division to know whether a number is divisible by them!

Prime Factorization Review FMCTORTREES

Let's make some more factor trees! Divisibility is about numbers making other numbers, and so is factorization. Create factor trees by dividing the numbers up into smaller numbers. Each set of smaller numbers that you create should multiply together to create the number above it.

TRY IT YOURSELF!

Instructions: Can you complete the factor trees for the numbers below? Pay attention to the prime factors. Do you notice any trends? You can now say that each of the top numbers is "divisible" by the bottom numbers!

\#T2 CHALLENGE

If the symbol " \leq " means is less than or equal to, complete the T2 tree so that $A \leq B \leq C \leq D$.

RULE FOR \#3

A number is divisible by 3 if the sum of its digits is divisible by 3 .
Which of the following numbers are divisible by 3? (Circle your answer.)
642 741

428416

学 WHY?

Any number $X Y Z$ can be written as $(X \times 100)+(Y \times \mathbf{1 0})+Z$. Let's take 642 as an example. Since $\mathbf{1 0 0}=1+99$ and $\mathbf{1 0}=\mathbf{1}+\mathbf{9}$, we can rewrite the above formula this way:

$$
\begin{aligned}
& (6 \times(1+99))+(4 \times(1+9))+2 \\
& 6(1)+6(99)+4(1)+4(9)+2
\end{aligned}
$$

Now, let's reorder these logically: $6+4+2+6(99)+4(9)$.
$12+6(99)+4(9)-$ All three terms are divisible by 3, so 642 is divisible by 3 .
Let's go over the other examples:

$$
\begin{aligned}
& 741 \\
& \text { XYZ } \\
& (7 \times 100)+(4 \times 10)+1 \\
& (\overbrace{(9 \times(99+1)})+(4 \times(9+1))+1 \\
& 7(99)+7(1)+4(9)+4(1)+1 \\
& 7+4+1+7(99)+4(9) \\
& 12+7(99)+4(9) \\
& \text { both divisible by } 3 \text {, } \\
& \text { so their sum is divisible by } 3
\end{aligned}
$$

12 is divisible by 3 , so 741 is divisible by 3 .

428416
XYZXYZ

$+2 \div 10000 \rightarrow(1+9999)$
$+8 \times 1000(1+999)$
$+4 \times 100 \rightarrow(1+99)$
$+1 \div 10 \rightarrow(1+9)$
$+6$

+6	99999, 9999, 999, 99, \& 9 can all be removed, since we know that they are divisible by 3.

$4+2+8+4+1+6=25$
$\mathbf{2 5}$ is not divisible by 3 ,
so 428416 is not divisible by 3 .

RULE FOR \#9

A number is divisible by 9 if the sum of its digits is divisible by 9 .
Which of the following numbers are divisible by 9 ? (Circle your answer.)

642

3465
12723

学 WHY?

Let's try a similar strategy to the one we used to determine divisibility by 3 . ABCD can be written as $(A \times 1000)+(B \times 100)+(C \times 10)+D$. Let's take 3465 as an example.

Before we tackle 3465, let's rewrite those multipliers like we did in the previous examples.

$$
(3 \times 1000)+(4 \times 100)+(6 \times 10)+5
$$

$$
\begin{gathered}
3(999)+3(1)+4(99)+4(1)+6(9)+6(1)+5 \\
\underbrace{3+4+6+5+3(999)+4(99)+6(9)} \\
18+\begin{array}{c}
\frac{3(999)+4(99)+6(9)}{\text { all divisible by } 9} \\
\text { so their sum is divisible by } 9
\end{array}
\end{gathered}
$$

18 is divisible by 9 , so 3465 is divisible by 9 .

What about 12723?
$(1 \times 1000)+(2 \times 1000)+(7 \times 100)+(2 \times 10)+3$
$(1 \times(9999+\mathbf{1})+(2 \times(999+1))+(7 \times(99+1))+(2 \times(9+1))+3$

$$
\begin{gathered}
1(9999)+1(1)+2(999)+2(1)+7(99)+7(1)+2(9)+2(1)+3 \\
1+2+7+2+3+2(999)+7(99)+2(9) \\
\left.15+\frac{2(999)+7(99)+2(9)}{\text { all divisible by } 9(}\right) \\
\text { so their sum is divisible by } 9
\end{gathered}
$$

15 is NOT divisible by 9 , so 12723 is NOT divisible by 9 .

RULE FOR \#5

A number is divisible by 5 if the last digit is a $\mathbf{0}$ or $\mathbf{5}$. This is the same as saying:

A number is divisible by $\mathbf{5}$ if the last digit is divisible by 5.

Which of the following numbers are divisible by 8? (Circle your answer.)
642
1495
428410
$A B$ can be written as A x $\mathbf{1 0}+\mathrm{B}$. Let's take the above numbers as examples.

642	1495	428410		
AB	AB	AB		
$64 \times 10+2$	$149 \times 10+5$	$42841 \times 10+0$		
640 is divisible by 5,				
2 is not, so			\quad	1490 is divisible by 5,
:---:				
642 is not divisible by 5.				

Because $\mathbf{1 0}$ is divisible by $\mathbf{5}$, any number that is a multiple of $\mathbf{1 0}$ is divisible by $\mathbf{5}$. Likewise, $\mathbf{5}$ is divisible by $\mathbf{5}$ and so the sum of any numbers divisible by $\mathbf{5}$ is divisible by $\mathbf{5}$. This boils down to the last digit being divisible by 5. And the only two digits divisible by $\mathbf{5}$ are $\mathbf{0}$ and $\mathbf{5}$.

> TRY IT YOURSELF!

Word Problem: Shirley is sorting 45 trolls into at least 2 bins at the toy store. There must be at least 2 trolls in each bin. She needs to put the same number of trolls in each bin without any leftover trolls. How many bins could Amelia use for her trolls? (There are multiple answers-- try and come up with as many as you can!) (2)

RULE FOR \#10

A number is divisible by 10 if the last digit is a $\mathbf{0}$.
Which of the following numbers are divisible by 10? (Circle your answer.)

642
1240
428410
"Ö' WHY?
XY can be written as X x 10 + Y. Let's take 1240 as an example.
Before we tackle 1240, let's rewrite those multipliers like we did in the previous examples.
$124 \times 10+0$
Since $\mathbf{0}$ and any multiple of $\mathbf{1 0}$ are divisible by $\mathbf{1 0}$, the sum of the two will be divisible by $\mathbf{1 0}$. Therefore, $\mathbf{1 2 4 0}$ is divisible by 10 .

642

$64 \times 10+2$
640 is divisible by 10 , 2 is not, so

642 is not divisible by 10.

428410
42841×10 + 0
428410 is divisible by 10, 0 is also divisible by 10 , so

428410 is divisible by 10 .

Since $\mathbf{1 0}$ is divisible by $\mathbf{1 0}$, any multiple is divisible by $\mathbf{1 0}$. If the last digit is a $\mathbf{0}$, then the number is divisible by $\mathbf{1 0}$.

> TRY IT YOURSELF!

Word Problem: Lina Bo Bardi is helping Fe design an operating theatre in the hospital that will have 150 seats. She wants to divide the seats into at least 3 equal sections but no more than 6 equal sections. How many different numbers of sections could Lina use? How many rows could there be? How many seats could be in each row? There are multiple answers! Get creative! (3)

RULE FOR \#6

A number is divisible by 6 if the number is divisible by 2 and divisible by $\mathbf{3}$. Or, a number is divisible by 6 if the number is even and the sum of its digits is divisible by 3.

Which of the following numbers are divisible by 6? (Circle your answer.)

642

1495

428410

学 WHY?

A number is divisible by $\mathbf{6}$ if the number is divisible by $\mathbf{2}$ and divisible by $\mathbf{3}$ since $\mathbf{6}=\mathbf{2} \times \mathbf{3}$, or, we can state the Rule for $\mathbf{6}$ in terms of the Rules for $\mathbf{2}$ and $\mathbf{3}$. That is, a number is divisible by $\mathbf{6}$ if the number is even and the sum of its digits is divisible by $\mathbf{3}$.

642
1495

1495 is not even, therefore it is not divisible by 2 (or 6).

428410

428410 is even, therefore it is divisible by 2.

2	642 is even, therefore it is divisible by 2.	1495 is not even, therefore it is not divisible by 2 (or 6).	428410 is even, therefore it is divisible by 2 .
3	$\begin{gathered} 6+4+2 \\ 12 \end{gathered}$ 12 is divisible by 3.	$1+4+9+5$ 19 19 is not divisible by 3, therefore 1495 is not divisible by 6.	$4+2+8+4+1+0$ 19 19 is not divisible by 3, therefore 428410 is not divisible by 6 .
6			

TRY IT YOURSELF!

Word Problem: Fe del Mundo brings 6 balloons to each child that has a birthday while they are in treatment. The hospital purchases balloons and tanks of helium separately. If each tank of helium can fill 54 balloons, and balloons come in packs of either 30,60 , or 108 , what is the smallest number of helium tanks and balloons the hospital should purchase to ensure there are no balloons or helium left over? How many birthdays can they accommodate with their purchase? (4)

ACTIVITY SOLUTIONS

1A. 135
1B. 3 months
2. Possible numbers of bins $=3,5,9,15$
3. Sections Rows Seats in Each Row

3	5	10
3	10	5
3	2	25
3	25	2
5	3	10
5	10	3
5	5	6
5	6	5
5	2	15
5	15	2
6	5	5

4. 2 tanks of helium, 1 pack of 108 balloons, 18 birthdays

Divisibility by 3, 5, 6, 9, \& 10
 QUICK REVIEW

Q1) 21	Q2)		Q3)	1441	Q4)	111000
b by $\quad \square$		by $3 \quad \square$		by $3 \quad \square$		by $3 \quad \square$
by $5 \square$		by $5 \square$		by $5 \quad \square$		by $5 \quad \square$
by $6 \square$		by $6 \square$		by $6 \quad \square$		by $6 \quad \square$
by $9 \quad \square$		by $9 \square$		by $9 \quad \square$		by $9 \quad \square$
by $10 \square$		by $10 \square$		by $10 \square$		by $10 \square$

IComplete the following word problems. If the words are confusing you, focus first on the numbers. You may find it easier to check all of the numbers' divisibility first!

Problem \#WP1

A. Company "Three, Five, Nine, Ten and Co." has 225 employees. The same number of employees work on each shift. How many shifts are possible from the choices below? Please circle all that apply.

Three Five Six Nine Ten
B. What is the smallest number of employees they would need to hire in addition to the original 225 employees so that all of the choices above would be possible?

Problem \#WP2

In the Small Town of "ThreeFiveNineTenville", the mayor hosted a charity fundraiser for all 1,860 residents and every resident attended. Each row of tables has the same number of tables and each table sits exactly 10 people. How many rows of tables are possible from the following choices assuming that every table was filled.

Three
Five
Six
Nine
Ten

- QUICK REVIEW ANSWERS

Q1) | | 21 |
| :--- | :--- |
| $\left.\left\lvert\, \begin{array}{ll}\text { by } 3 & \square \\ \text { by } 5 & \square \\ \text { by } 6 & \square \\ \text { by } 9 & \square \\ \text { by } 10 & \square\end{array}\right.\right)$ | |

Q2) | 189 |
| :--- |
| $\left.\left\lvert\, \begin{array}{ll}\text { by } 3 & \square \\ \text { by } 5 & \square \\ \text { by } 6 & \square \\ \text { by } 9 & \square \\ \text { by } 10 & \square\end{array}\right.\right)$ |

Q3) 1441 $\begin{array}{ll}\text { by } 3 & \square \\ \text { by } 5 & \square \\ \text { by } 6 & \square \\ \text { by } 9 & \square \\ \text { by } 10 & \square\end{array}$

Q4) 111000 $\left\lvert\,$| by 3 |
| :--- |
| by 5 |
| by |
| by |
| by |
| b |
| by |$\quad \square\right.$

> WORD PROBLEM ANSWERS
WP1-A. 3,5 , and 9
WP1-B. 45 employees
WP2. 3 or 6

