## Solutions to Newsletter 1 Prime Palooza Practice Problems

1. Let's start with the basics. Find the prime factorizations of the following numbers. If the number is prime, write "prime".

## Solutions:

a. $96=48 \cdot 2=24 \cdot 2 \cdot 2=12 \cdot 2 \cdot 2 \cdot 2=3 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2=2^{5} \cdot 3$
b. 103 = prime
c. $357=3 \cdot 119=3 \cdot 7 \cdot 17$
d. $625=5 \cdot 125=5 \cdot 5 \cdot 25=5 \cdot 5 \cdot 5 \cdot 5=5^{4}$
e. $1001=7 \cdot 11 \cdot 13$
2. Alicia's friend says, "I think $246,813,579$ is prime." Is he right or wrong?

Solution: Try to find a divisor of 246,813,579. Obviously this number is odd but a quick check reveals that it is a multiple of $3(2+4+6+8+1+3+5+7+9=45$, which is a multiple of 3 ). Thus, this number is a multiple of 3 and, therefore, is composite. So Alicia's friend is wrong.
3. What is the smallest prime factor of 71,025 ?

Solution: Test 71,025 for divisibility by small prime numbers. It's not divisible by 2 , but it is divisible by $3(7+1+0+2+5=15$, which is a multiple of 3$)$. Hence the smallest prime factor of 71,025 is 3 .
4. What is the smallest composite number that is not divisible by $2,3,5$, or 7?

Solution: Consider the prime factorization of this number. Since it is not divisible by $2,3,5$ or 7 , all the primes in the prime factorization are 11 or greater. Since it is composite, the prime factorization consists of at least two primes. Hence, our number is $11 \cdot 11=121$.
5. What is the smallest odd number that has three different prime factors?

Solution: Fun fact: An odd number can only have odd factors. The three smallest odd prime factors are 3,5 , and 7 . Hence, the smallest odd number that has three different prime factors is $3 \cdot 5 \cdot 7=105$.
6. Write the prime factorization of $2 \times 4 \times 6 \times 8 \times 10 \times 12$. This should be in the form:
$x^{a} \times y^{b} \times z^{c}$, where $x, y$, and $z$ are different prime numbers and $a, b$, and $c$ are exponents (powers) of those prime numbers.

Solution: The primes that this number is divisible by are 2,3 , and 5 .
-- there is only one power of 5, the one that comes from 10.
-- there are two powers of 3, one that comes from 6 and one that comes from 12.
-- there is one power of 2 that comes from 2, 6 and 10. Two powers of 2 come from each of 4 , and 12 . And three powers of 2 come from 8.
Therefore, there are a total of $3+4+3=10$ powers of 2 .
Hence, the prime factorization is $2^{10} \times 3^{2} \times 5^{1}$.
7. A positive number has 3 digits. The product of the digits is 135 . What is the sum of the digits?

Solution: $135=27 \cdot 5=3^{3} \cdot 5=3 \cdot 9 \cdot 5$. So $3+9+5=17$ is the sum of the digits.
Is this the only possible answer? Yes, because any other combination requires one of the other 3 factors to be a 2-digit number, which can't be used as a digit.
8. Chien-Shiung is thinking of a 3-digit number. She multiplies the digits and gets 20. How many distinct 3-digit numbers could Chien-Shiung be thinking about?

Solution: Note that $20=5$ * 4. Hence one of the digits in Chien-Shuing's number is a multiple of 5 . If that digit were zero, then the product would also be zero and not 20.
Therefore, 5 is one of Chien-Shiung's digits.
The other two digits multiply to 4 . They are either 1 and 4 or 2 and 2 .
If they are 1 and 4 , there are 6 ways to rearrange 1,4 and 5 .
If they are 2 and 2 , there are only 3 ways to arrange 2,2 , and 5 .

Hence, there are a total of $6+3=9$ possibilities for Chien-Shiung's number.

